光氧催化装置,催化燃烧一体机,布袋除尘器设备,烟气脱白,打磨柜,尾气净化器_泰州俊志环保设备有限公司
当前位置:返回首页 > 新闻动态 > 行业资讯 >
新闻分类
NEWS CATEGORY
主打产品

催化燃烧装置市场应用与应用和方法

2020-08-24 18:12:09

文章摘要:

根据世界卫生组织等机构的定义,VOCs是指沸点在50℃~250℃的化合物,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物。...

[一]、VOCs处理技术现状及发展

随着我国工业化的迅速推进,各种环境问题日益突出,催化燃烧其中挥发性有机物(VolatileOrganicCompounds,简称VOCs)的污染得到广泛关注。根据世界卫生组织等机构的定义,VOCs是指沸点在50℃~250℃的化合物,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物。

VOCs排放来源广泛,且对人体和环境的危害,它们通过呼吸道和皮肤进入人体后,有些会产生“三致”效应。VOCs污染已经引起人们的广泛关注。因此,VOCs治理对于保护环境、国民健康和经济可持续发展,都具有重要意义。

目前,VOCs治理技术主要有两类:一类是预防性措施,以换设备、改进工艺等为主。二类是控制性措施,以末端治理为主。现阶段末端控制技术是VOCs污染控制的重要手段,包括回收技术和销毁技术。回收技术主要采用物理方法,包括吸收技术、吸附技术、冷凝技术、膜分离技术等。销毁技术主要采用化学和生物的方法,包括热力焚烧技术、催化燃烧技术、生物技术等、低温等离子体技术、光催化技术。吸附技术、热力焚烧技术和催化燃烧技术是目前应用较广泛的传统治理技术。低温等离子体技术、光催化技术和膜分离技术是近年发展的新技术,低温等离子体技术是指在外加电场作用下,通过高压脉冲放电在常温下产生大量的高能电子、离子和自由基等活性粒子,进而与VOCs分子作用而电离、离解或激发VOCs分子发生一系列的复杂的等离子体物理和化学反应,使VOCs降解为CO2和H2O。目前,低温等离子体技术按放电形式可分为电子束照射法、介质阻挡放电法和电晕放电法等技术。各种放电形式获得的高能电子的能量分布和能量密度差别很大。但由于低温等离子体技术具有经济和技术上的优点,因此该技术也成为VOCs治理技术的研究热点之一。目前,研究者利用低温等离子体技术降解乙烯、庚烷、三苯等有机废气,均具有良好的脱除率但低温等离子体技术还存在不足之处:(1)臭氧问题,腐蚀设备,污染环境;(2)X射线辐射作用;(3)无选择性,高能电子会降解N2和CO2,浪费资源;(4)设备要求高,投入成本高,运行功耗高且不稳定。因此,等温等离子体治理VOCs基本还处于实验室阶段,工业运用相对很少。

[二]、电控制系统组成及功能

催化燃烧器电控制系统 由PLC控制器、文本显示器、变频调速器、点火器、紫外线传感器、热电偶等电控设备以及风机,另外由零压阀调节燃气与空气的比例。催化燃烧电气控制系统工作过程分为三个状态:燃烧器工作状态、停止状态及参数设定状态。在工作状态中又分为点火过程和燃烧过程。由安装的热电偶检测出温度,送文本显示器显示。PLc具有模拟量输入、输出模块,检测火焰燃烧信号和热电偶温度信号,将检测到的信号与设定的信号经过比较运算后,通过0~10 V电信号控制变频器的输出频率来调整风机的转速,保持燃烧器的燃烧温度,这就是构成以设定温度为基准的控制系统;自动检测燃烧器温度信号与设定的温度比较,输出各类警报信号或直接停机。显示器可以显示燃气流量、燃烧温度和变频器输出频率。设定参数和工作状态等信息;可以通过显示器在线调整运行温度参数,修改设定温度控制风机的运行。该催化燃烧设备系统还设有多种保护功能,尤其是较强的逻辑互锁功能,从而保证系统工作可靠,并且具有较为完善的控制功能。

[三]、等离子体一一光催化复合净化技术

等离子体一一光催化复合净化技术集成了等离子体净化技术和光催化净化技术的优点,对、氨气、O3、CO、气相苯等有机化合物有较好的净化效果。当前的等离子体一一光催化复合净化技术主要有2种方式,一是将光催化剂直接附着在等离子体发生装置上,如在等离子体发生管的管壁涂覆光催化剂膜,这种方式有光催化剂表面积较低和增加等离子体器件制备难度的缺点;一是以等离子体产生的电磁波作为光催化剂的激发光源,这种方式较大的问题是等离子体产生的可用于激发光催化剂的光的强度较弱,不足以引发大量的光催化降解反应。鉴于此,我国相关学者积极探索新的复合方式,以期提升复合净化技术的效率与使用价值。许太明等人尝试了一种新的复合方式,通过实验对等离子体单元在前、光催化单元在后和气流先流经光催化网再经过等离子体单元两种组合方式进行比对,发现前者净化高于后者,有较显著的协同促进效应,并发现通过改变等离子体发生单元与光催化单元的距离、在两者问放置可负电荷影响的网状物等还可进一步提高反应性能。但该技术无论在还是国内都仍处于试验阶段,有待进一步实质性的研究进展。